Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2022
Question Paper Log Number P70945A
Publications Code 4CH1_1C_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	nucleus	ACCEPT nuclei	1
(b)	11 / eleven		1
(c)	1 / one / group 1		1
(d)	$3 /$ three / period 3		1
(e)	+1/ 1+	ACCEPT + / Na ${ }^{+}$/ positive 1	1
		IGNORE positive alone	
			Total 5

(c)	An explanation that links the following three points: M1 sulfur dioxide produced when fuel is burned	ALLOW sulfur / fuel reacts with oxygen / oxidises forming sulfur dioxide IGNORE sulfur trioxide and sulfur oxide	3		
M2 (sulfur dioxide) dissolves in / reacts with rain / water	ACCEPT (sulfur oxide / sulfur trioxide) dissolves in / reacts with rain / water IGNORE mixes				
M3 (causing) acid rain				\quad	Total 10
:---					

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
6 \quad(a)
\] \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
\] \\
(squeaky) pop with lighted splint \\
M1 amount of magnesium \(=0.090 \div 24\) OR 0.00375 (mol) \\
M2 amount of HCl needed \(=2 \times 0.00375=0.0075(\mathrm{~mol})\) (which is less than 0.025) \\
OR \\
M1 amount of magnesium needed \(=0.025 \div 2\) OR 0.0125 (mol) \\
M2 mass of magnesium needed \(=0.0125 \times 24=0.3(\mathrm{~g})\) (there is less magnesium than needed)
\end{tabular} \& \begin{tabular}{l}
IGNORE state symbols even if incorrect \\
ALLOW any number of significant figures
\end{tabular} \& 1
1
2 \\
\hline \begin{tabular}{l}
(b) \\
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
all points plotted correctly to the nearest grid line best fit curve starting at 0 and levelling off at \(88 \mathrm{~cm}^{3}\) \\
M1 vertical line on grid from 10 seconds to curve \\
M2 volume correctly read from their graph to the nearest grid line \\
An explanation that links the following two points \\
M1 concentration (of HCl) is greatest (at the start) \\
M2 more collisions per unit time / more frequent collisions
\end{tabular} \& \begin{tabular}{l}
ALLOW any mark at correct position on curve / either axis \\
expected value 25 to \(30 \mathrm{~cm}^{3}\) \\
REJ ECT incorrect references to energy ALLOW more particles (of \(\mathrm{HCl} / \mathrm{more}^{+}\) ions) \\
ALLOW more HCl molecules / greater surface area of Mg IGNORE greater mass / more Mg IGNORE references to the graph
\end{tabular} \& 1
1
2

2

\hline
\end{tabular}

(c) (i)	M1 curve starting at 0 and steeper than original curve	ALLOW a curve starting within 1 small square of the original	2
(ii)	M2 curve levelling off at same volume as original curve An explanation that links the following three points		3
	M1 particles gain more (kinetic) energy	ALLOW particles move faster	
	M2 more collisions have energy greater than the activation energy	ACCEPT more collisions are successful	
	M3 collision frequency increases OR rate of reaction increases	ACCEPT more (successful) collisions per unit time	
			Total 15

Question number	Answer	Notes	Marks
8 (a)	M1 diamond has a tetrahedral (structure) OR in diamond each (carbon) atom is (covalently) bonded to 4 other (carbon) atoms M2 graphite has a hexagonal (structure) / has layers OR in graphite each (carbon) atom is (covalently) bonded to 3 other (carbon) atoms M3 diamond does not conduct electricity OR graphite conducts electricity M4 diamond has no delocalised electrons OR graphite has delocalised electrons M5 diamond is hard OR graphite is soft M6 in diamond the strong ($\mathrm{C}-\mathrm{C}$) bonds need to be broken OR in graphite the layers can slide over each other OR graphite has weak forces between layers	REJ ECT ions / metallic once in M1 or M2 REJ ECT diamond is soft / graphite is hard REJ ECT reference to intermolecular	6
(b)	An explanation that links the following four points: M1 C_{60} fullerene has weak forces between the molecules / weak intermolecular forces M2 little / less energy needed to break / overcome the forces / separate the molecules M3 diamond and graphite have many / strong (covalent) bonds (between atoms) M4 large amount of / more energy needed to break / overcome the (covalent) bonds	no M1 or M2 if reference to breaking bonds in fullerene no M3 or M4 if reference to intermolecular forces in diamond and graphite If M1 and M3 are not scored allow 1 mark for covalent bonds (in diamond and graphite) need to be broken / overcome AND intermolecular forces need to be broken / overcome in fullerene	4 Total 10

Question number	Answer	Notes	Marks
9 (a) (i)	$\mathrm{PbO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Pb}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{O} \mathbf{O R} \mathrm{~g})$	ALLOW upper case letters for state symbols	1
(ii)(iii)	D 2+		1
	A is incorrect as the charge on the lead ion is not 1B is incorrect as the charge on the lead ion is not 1+ C is incorrect as the charge on the lead ion is not 2-		
	An explanation that links either pair of the two points		2
	M1 lead oxide is reduced and hydrogen is oxidised	ACCEPT lead oxide is the oxidising agent and hydrogen is the reducing agent	
	M2 lead oxide loses oxygen and hydrogen gains oxygen	ACCEPT lead ions gain electrons and hydrogen loses electrons	
	M1 lead oxide loses oxygen so is reduced	ACCEPT lead ions gain electrons so are reduced	
	M2 hydrogen gains oxygen so is oxidised	ACCEPT hydrogen loses electrons so is oxidised	
		ALLOW oxidation number of lead / Pb^{2+} decreases from +2 to 0 so is reduced for M1 Oxidation number of hydrogen increases from 0 to +1 so is oxidised for M2	
(iv)	A description that refers to the following two points:		2
	M1 measure the boiling point (of the water)	ALLOW boil it / measure the freezing point / freeze it	
	M2 (boiling point is) $100^{\circ} \mathrm{C}$	ACCEPT (freezing point is) $0^{\circ} \mathrm{C}$	

(b) (i) An explanation that links the following two points:

M1 heat the crucible

M2 repeat until constant mass is obtained
(ii)
$\mathbf{M 1}$ (moles of $\mathrm{Pb}_{3} \mathrm{O}_{4}=5.48 \div 685 \mathbf{O R} 0.008(00)$

M2 (moles of $\mathrm{PbO}=0.008(00) \times 3$ OR 0.024(0)

M3 (mass of $\mathrm{PbO}=0.024 \times 223=5.352(\mathrm{~g})$

	2
ALLOW repeat the	
experiment	

Question number	Answer	Notes	Marks
10 (a)	M1 3 bonding pairs M2 rest of molecule fully correct	$\mathbf{M 2}$ dep on $\mathbf{M 1}$ ALLOW any combination of dots and crosses	2
(b) (i)	M1 ammonium chloride ammonium carbonate $\mathrm{NH}_{4} \mathrm{Cl}$ $\mathbf{M 2}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$		2
(ii)	$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	ALLOW multiples IGNORE state symbols even if incorrect	1
	M1 add sodium hydroxide (solution)		3
	M2 test (gas / ammonia) with (damp) red litmus paper / (damp) universal indicator paper M3 (red litmus) turns blue / universal indicator) turns blue / purple	REJ ECT if solution / ammonium (sulfate) tested with litmus / universal indicator paper	

(c) (i) (ii)	M1 $2 \times 14 \div 80$ OR 0.35 $\text { M2 }(0.35 \times 100 \Rightarrow 35(\%)$ An answer that links any 4 points: M1 $\left(\mathrm{NH}_{3}\right)$ higher \%of N OR $\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ lower \% of N M2 $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ easy to use (to soil) / easy for the plants to absorb / less wastage OR $\left(\mathrm{NH}_{3}\right)$ difficult to use (to soil) / difficult for the plants to absorb / more wastage / has to be dissolved (in water) first M3 $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{pH}$ close to that of (rain) water / will not alter the pH (of the soil/ water) M4 NH_{3} will cause (the soil/ water) to become alkaline / will raise the pH (of the soil/ water) / neutralise (the water / soil) / may stunt growth of plants / may damage / kill plants M5 NH_{3} and or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ soluble so runoff / wastage of fertiliser / water pollution / eutrophication / leaching	correct answer without working scores 2 ALLOW 1 mark for 17/ 17.5 \| 18 (\% REJ ECT NH 3 has a pH close to rainwater REJ ECT ammonia causes the soil / water to become acidic	4

